Department of Applied and Computational **Mathematics and Statistics Colloquium**

Guowei Wei

Department of Mathematics Michigan State University

Mathematical deep learning for drug design and discovery

Designing efficient drugs for curing diseases is of essential importance for the 21st century's life science. Computer-aided drug design and discovery has obtained a significant recognition recently. However, the geometric complexity of protein-drug complexes remains a grand challenge to conventional computational methods. We assume that the physics of interest of protein-drug complexes lies on low-dimensional manifolds or subspaces embedded in a highdimensional data space. We devise topological abstraction, manifold reduction, graph simplification, and multiscale modeling to construct low-dimensional representations of biomolecules in massive and diverse datasets. These representations are integrated with various deep learning algorithms for the predictions of protein-ligand binding affinity, drug toxicity, drug solubility, drug partition coefficient and mutation induced protein stability change, and for the discrimination of active ligands from decoys. I will mainly focus on one specific mathematical technique, i.e., persistent homology, to illustrate the working principle of this approach and its performance in D3R Grand Challenges, a worldwide competition series in computer-aided drug design and discovery (http://users.math.msu.edu/users/wei/D3R GC3.pdf.)

> Wed., September 19, 2018 4:15 PM - 5:15 PM **127 Hayes-Healy Center**

Colloquium Tea 3:30 PM to 4:15 PM

IF th

101A Crowley Commons Room